3.4.44 \(\int \frac {1}{x^4 (1+x^4+x^8)} \, dx\) [344]

Optimal. Leaf size=147 \[ -\frac {1}{3 x^3}+\frac {\tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{4 \sqrt {3}}+\frac {1}{4} \tan ^{-1}\left (\sqrt {3}-2 x\right )-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{4 \sqrt {3}}-\frac {1}{4} \tan ^{-1}\left (\sqrt {3}+2 x\right )+\frac {1}{8} \log \left (1-x+x^2\right )-\frac {1}{8} \log \left (1+x+x^2\right )+\frac {\log \left (1-\sqrt {3} x+x^2\right )}{8 \sqrt {3}}-\frac {\log \left (1+\sqrt {3} x+x^2\right )}{8 \sqrt {3}} \]

[Out]

-1/3/x^3-1/4*arctan(2*x-3^(1/2))-1/4*arctan(2*x+3^(1/2))+1/8*ln(x^2-x+1)-1/8*ln(x^2+x+1)+1/12*arctan(1/3*(1-2*
x)*3^(1/2))*3^(1/2)-1/12*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)+1/24*ln(1+x^2-x*3^(1/2))*3^(1/2)-1/24*ln(1+x^2+x*
3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1382, 1433, 1108, 648, 632, 210, 642} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-2 x}{\sqrt {3}}\right )}{4 \sqrt {3}}+\frac {1}{4} \text {ArcTan}\left (\sqrt {3}-2 x\right )-\frac {\text {ArcTan}\left (\frac {2 x+1}{\sqrt {3}}\right )}{4 \sqrt {3}}-\frac {1}{4} \text {ArcTan}\left (2 x+\sqrt {3}\right )-\frac {1}{3 x^3}+\frac {1}{8} \log \left (x^2-x+1\right )-\frac {1}{8} \log \left (x^2+x+1\right )+\frac {\log \left (x^2-\sqrt {3} x+1\right )}{8 \sqrt {3}}-\frac {\log \left (x^2+\sqrt {3} x+1\right )}{8 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(1 + x^4 + x^8)),x]

[Out]

-1/3*1/x^3 + ArcTan[(1 - 2*x)/Sqrt[3]]/(4*Sqrt[3]) + ArcTan[Sqrt[3] - 2*x]/4 - ArcTan[(1 + 2*x)/Sqrt[3]]/(4*Sq
rt[3]) - ArcTan[Sqrt[3] + 2*x]/4 + Log[1 - x + x^2]/8 - Log[1 + x + x^2]/8 + Log[1 - Sqrt[3]*x + x^2]/(8*Sqrt[
3]) - Log[1 + Sqrt[3]*x + x^2]/(8*Sqrt[3])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1108

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 1382

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a +
 b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1))), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1433

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[2*(d/e) -
b/c, 2]}, Dist[e/(2*c), Int[1/Simp[d/e + q*x^(n/2) + x^n, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x^(n/2
) + x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2,
 0] && IGtQ[n/2, 0] && (GtQ[2*(d/e) - b/c, 0] || ( !LtQ[2*(d/e) - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))

Rubi steps

\begin {align*} \int \frac {1}{x^4 \left (1+x^4+x^8\right )} \, dx &=-\frac {1}{3 x^3}+\frac {1}{3} \int \frac {-3-3 x^4}{1+x^4+x^8} \, dx\\ &=-\frac {1}{3 x^3}-\frac {1}{2} \int \frac {1}{1-x^2+x^4} \, dx-\frac {1}{2} \int \frac {1}{1+x^2+x^4} \, dx\\ &=-\frac {1}{3 x^3}-\frac {1}{4} \int \frac {1-x}{1-x+x^2} \, dx-\frac {1}{4} \int \frac {1+x}{1+x+x^2} \, dx-\frac {\int \frac {\sqrt {3}-x}{1-\sqrt {3} x+x^2} \, dx}{4 \sqrt {3}}-\frac {\int \frac {\sqrt {3}+x}{1+\sqrt {3} x+x^2} \, dx}{4 \sqrt {3}}\\ &=-\frac {1}{3 x^3}-\frac {1}{8} \int \frac {1}{1-x+x^2} \, dx+\frac {1}{8} \int \frac {-1+2 x}{1-x+x^2} \, dx-\frac {1}{8} \int \frac {1}{1+x+x^2} \, dx-\frac {1}{8} \int \frac {1+2 x}{1+x+x^2} \, dx-\frac {1}{8} \int \frac {1}{1-\sqrt {3} x+x^2} \, dx-\frac {1}{8} \int \frac {1}{1+\sqrt {3} x+x^2} \, dx+\frac {\int \frac {-\sqrt {3}+2 x}{1-\sqrt {3} x+x^2} \, dx}{8 \sqrt {3}}-\frac {\int \frac {\sqrt {3}+2 x}{1+\sqrt {3} x+x^2} \, dx}{8 \sqrt {3}}\\ &=-\frac {1}{3 x^3}+\frac {1}{8} \log \left (1-x+x^2\right )-\frac {1}{8} \log \left (1+x+x^2\right )+\frac {\log \left (1-\sqrt {3} x+x^2\right )}{8 \sqrt {3}}-\frac {\log \left (1+\sqrt {3} x+x^2\right )}{8 \sqrt {3}}+\frac {1}{4} \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )+\frac {1}{4} \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )+\frac {1}{4} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,-\sqrt {3}+2 x\right )+\frac {1}{4} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,\sqrt {3}+2 x\right )\\ &=-\frac {1}{3 x^3}+\frac {\tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{4 \sqrt {3}}+\frac {1}{4} \tan ^{-1}\left (\sqrt {3}-2 x\right )-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{4 \sqrt {3}}-\frac {1}{4} \tan ^{-1}\left (\sqrt {3}+2 x\right )+\frac {1}{8} \log \left (1-x+x^2\right )-\frac {1}{8} \log \left (1+x+x^2\right )+\frac {\log \left (1-\sqrt {3} x+x^2\right )}{8 \sqrt {3}}-\frac {\log \left (1+\sqrt {3} x+x^2\right )}{8 \sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.17, size = 148, normalized size = 1.01 \begin {gather*} \frac {1}{24} \left (-\frac {8}{x^3}-\frac {4 i \tan ^{-1}\left (\frac {1}{2} \left (1-i \sqrt {3}\right ) x\right )}{\sqrt {\frac {1}{6} i \left (i+\sqrt {3}\right )}}+\frac {4 i \tan ^{-1}\left (\frac {1}{2} \left (1+i \sqrt {3}\right ) x\right )}{\sqrt {-\frac {1}{6} i \left (-i+\sqrt {3}\right )}}-2 \sqrt {3} \tan ^{-1}\left (\frac {-1+2 x}{\sqrt {3}}\right )-2 \sqrt {3} \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )+3 \log \left (1-x+x^2\right )-3 \log \left (1+x+x^2\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(1 + x^4 + x^8)),x]

[Out]

(-8/x^3 - ((4*I)*ArcTan[((1 - I*Sqrt[3])*x)/2])/Sqrt[(I/6)*(I + Sqrt[3])] + ((4*I)*ArcTan[((1 + I*Sqrt[3])*x)/
2])/Sqrt[(-1/6*I)*(-I + Sqrt[3])] - 2*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - 2*Sqrt[3]*ArcTan[(1 + 2*x)/Sqrt[3]]
 + 3*Log[1 - x + x^2] - 3*Log[1 + x + x^2])/24

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 114, normalized size = 0.78

method result size
risch \(-\frac {1}{3 x^{3}}-\frac {\ln \left (4 x^{2}+4 x +4\right )}{8}-\frac {\arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right ) \sqrt {3}}{12}+\frac {\ln \left (4 x^{2}-4 x +4\right )}{8}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{12}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (9 \textit {\_Z}^{4}+3 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left (3 \textit {\_R}^{3}-\textit {\_R} +x \right )\right )}{4}\) \(96\)
default \(-\frac {\ln \left (x^{2}+x +1\right )}{8}-\frac {\arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right ) \sqrt {3}}{12}-\frac {1}{3 x^{3}}-\frac {\arctan \left (2 x -\sqrt {3}\right )}{4}-\frac {\arctan \left (2 x +\sqrt {3}\right )}{4}+\frac {\ln \left (1+x^{2}-x \sqrt {3}\right ) \sqrt {3}}{24}-\frac {\ln \left (1+x^{2}+x \sqrt {3}\right ) \sqrt {3}}{24}+\frac {\ln \left (x^{2}-x +1\right )}{8}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{12}\) \(114\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(x^8+x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/8*ln(x^2+x+1)-1/12*arctan(1/3*(2*x+1)*3^(1/2))*3^(1/2)-1/3/x^3-1/4*arctan(2*x-3^(1/2))-1/4*arctan(2*x+3^(1/
2))+1/24*ln(1+x^2-x*3^(1/2))*3^(1/2)-1/24*ln(1+x^2+x*3^(1/2))*3^(1/2)+1/8*ln(x^2-x+1)-1/12*3^(1/2)*arctan(1/3*
(2*x-1)*3^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+x^4+1),x, algorithm="maxima")

[Out]

-1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) - 1/3/x^3 - 1/2*integ
rate(1/(x^4 - x^2 + 1), x) - 1/8*log(x^2 + x + 1) + 1/8*log(x^2 - x + 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 244 vs. \(2 (113) = 226\).
time = 0.38, size = 244, normalized size = 1.66 \begin {gather*} \frac {4 \, \sqrt {6} \sqrt {3} \sqrt {2} x^{3} \arctan \left (-\frac {1}{3} \, \sqrt {6} \sqrt {3} \sqrt {2} x + \frac {1}{36} \, \sqrt {6} \sqrt {3} \sqrt {2} \sqrt {-72 \, \sqrt {6} \sqrt {2} x + 144 \, x^{2} + 144} + \sqrt {3}\right ) + 4 \, \sqrt {6} \sqrt {3} \sqrt {2} x^{3} \arctan \left (-\frac {1}{3} \, \sqrt {6} \sqrt {3} \sqrt {2} x + \frac {1}{3} \, \sqrt {6} \sqrt {3} \sqrt {\sqrt {6} \sqrt {2} x + 2 \, x^{2} + 2} - \sqrt {3}\right ) - \sqrt {6} \sqrt {2} x^{3} \log \left (72 \, \sqrt {6} \sqrt {2} x + 144 \, x^{2} + 144\right ) + \sqrt {6} \sqrt {2} x^{3} \log \left (-72 \, \sqrt {6} \sqrt {2} x + 144 \, x^{2} + 144\right ) - 4 \, \sqrt {3} x^{3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - 4 \, \sqrt {3} x^{3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - 6 \, x^{3} \log \left (x^{2} + x + 1\right ) + 6 \, x^{3} \log \left (x^{2} - x + 1\right ) - 16}{48 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+x^4+1),x, algorithm="fricas")

[Out]

1/48*(4*sqrt(6)*sqrt(3)*sqrt(2)*x^3*arctan(-1/3*sqrt(6)*sqrt(3)*sqrt(2)*x + 1/36*sqrt(6)*sqrt(3)*sqrt(2)*sqrt(
-72*sqrt(6)*sqrt(2)*x + 144*x^2 + 144) + sqrt(3)) + 4*sqrt(6)*sqrt(3)*sqrt(2)*x^3*arctan(-1/3*sqrt(6)*sqrt(3)*
sqrt(2)*x + 1/3*sqrt(6)*sqrt(3)*sqrt(sqrt(6)*sqrt(2)*x + 2*x^2 + 2) - sqrt(3)) - sqrt(6)*sqrt(2)*x^3*log(72*sq
rt(6)*sqrt(2)*x + 144*x^2 + 144) + sqrt(6)*sqrt(2)*x^3*log(-72*sqrt(6)*sqrt(2)*x + 144*x^2 + 144) - 4*sqrt(3)*
x^3*arctan(1/3*sqrt(3)*(2*x + 1)) - 4*sqrt(3)*x^3*arctan(1/3*sqrt(3)*(2*x - 1)) - 6*x^3*log(x^2 + x + 1) + 6*x
^3*log(x^2 - x + 1) - 16)/x^3

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.42, size = 197, normalized size = 1.34 \begin {gather*} \left (\frac {1}{8} + \frac {\sqrt {3} i}{24}\right ) \log {\left (x - 1 - \frac {\sqrt {3} i}{3} - 9216 \left (\frac {1}{8} + \frac {\sqrt {3} i}{24}\right )^{5} \right )} + \left (\frac {1}{8} - \frac {\sqrt {3} i}{24}\right ) \log {\left (x - 1 - 9216 \left (\frac {1}{8} - \frac {\sqrt {3} i}{24}\right )^{5} + \frac {\sqrt {3} i}{3} \right )} + \left (- \frac {1}{8} + \frac {\sqrt {3} i}{24}\right ) \log {\left (x + 1 - \frac {\sqrt {3} i}{3} - 9216 \left (- \frac {1}{8} + \frac {\sqrt {3} i}{24}\right )^{5} \right )} + \left (- \frac {1}{8} - \frac {\sqrt {3} i}{24}\right ) \log {\left (x + 1 - 9216 \left (- \frac {1}{8} - \frac {\sqrt {3} i}{24}\right )^{5} + \frac {\sqrt {3} i}{3} \right )} + \operatorname {RootSum} {\left (2304 t^{4} + 48 t^{2} + 1, \left ( t \mapsto t \log {\left (- 9216 t^{5} - 8 t + x \right )} \right )\right )} - \frac {1}{3 x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(x**8+x**4+1),x)

[Out]

(1/8 + sqrt(3)*I/24)*log(x - 1 - sqrt(3)*I/3 - 9216*(1/8 + sqrt(3)*I/24)**5) + (1/8 - sqrt(3)*I/24)*log(x - 1
- 9216*(1/8 - sqrt(3)*I/24)**5 + sqrt(3)*I/3) + (-1/8 + sqrt(3)*I/24)*log(x + 1 - sqrt(3)*I/3 - 9216*(-1/8 + s
qrt(3)*I/24)**5) + (-1/8 - sqrt(3)*I/24)*log(x + 1 - 9216*(-1/8 - sqrt(3)*I/24)**5 + sqrt(3)*I/3) + RootSum(23
04*_t**4 + 48*_t**2 + 1, Lambda(_t, _t*log(-9216*_t**5 - 8*_t + x))) - 1/(3*x**3)

________________________________________________________________________________________

Giac [A]
time = 4.13, size = 113, normalized size = 0.77 \begin {gather*} -\frac {1}{12} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{12} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - \frac {1}{24} \, \sqrt {3} \log \left (x^{2} + \sqrt {3} x + 1\right ) + \frac {1}{24} \, \sqrt {3} \log \left (x^{2} - \sqrt {3} x + 1\right ) - \frac {1}{3 \, x^{3}} - \frac {1}{4} \, \arctan \left (2 \, x + \sqrt {3}\right ) - \frac {1}{4} \, \arctan \left (2 \, x - \sqrt {3}\right ) - \frac {1}{8} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{8} \, \log \left (x^{2} - x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+x^4+1),x, algorithm="giac")

[Out]

-1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) - 1/24*sqrt(3)*log(x^
2 + sqrt(3)*x + 1) + 1/24*sqrt(3)*log(x^2 - sqrt(3)*x + 1) - 1/3/x^3 - 1/4*arctan(2*x + sqrt(3)) - 1/4*arctan(
2*x - sqrt(3)) - 1/8*log(x^2 + x + 1) + 1/8*log(x^2 - x + 1)

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 104, normalized size = 0.71 \begin {gather*} -\mathrm {atan}\left (\frac {2\,x}{-1+\sqrt {3}\,1{}\mathrm {i}}\right )\,\left (-\frac {1}{4}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )-\mathrm {atan}\left (\frac {2\,x}{1+\sqrt {3}\,1{}\mathrm {i}}\right )\,\left (\frac {1}{4}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )-\mathrm {atan}\left (\frac {x\,2{}\mathrm {i}}{-1+\sqrt {3}\,1{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{12}+\frac {1}{4}{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {x\,2{}\mathrm {i}}{1+\sqrt {3}\,1{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{12}-\frac {1}{4}{}\mathrm {i}\right )-\frac {1}{3\,x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(x^4 + x^8 + 1)),x)

[Out]

- atan((2*x)/(3^(1/2)*1i - 1))*((3^(1/2)*1i)/12 - 1/4) - atan((2*x)/(3^(1/2)*1i + 1))*((3^(1/2)*1i)/12 + 1/4)
- atan((x*2i)/(3^(1/2)*1i - 1))*(3^(1/2)/12 + 1i/4) - atan((x*2i)/(3^(1/2)*1i + 1))*(3^(1/2)/12 - 1i/4) - 1/(3
*x^3)

________________________________________________________________________________________